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1 Purpose and Introduction

Despite numerous advances in bringing quantum computing (QC) closer to the application,
exploring the technology from an application perspective remains difficult [1]. From 2022
to 2024, the research consortium “Quantum-enabling services and tools for industrial
applications” (QuaST) gathered seven partners from science and industry to tackle this
problem within the problem domain of combinatorial optimization. Throughout the three
project years, several cornerstone application cases have been investigated with numerous
methods from the literature and within the consortium. This document gathers the
enormous expertise gained within QuaST and with the joint effort of over 30 researchers
and experts from industry and contains key results of over 20 publications.

Whether any quantum advantage can be found for practically relevant optimization
problems remains an open question, even more so with the current noisy quantum hardware.
However, new algorithms emerge constantly, existing ones are improved, and hardware
noise decreases, enabling more and more experiments to aid the quest for quantum
advantage and quantum utility. Still, the authors of this guide stress the following point
clearly: There is no simple recipe for obtaining a quantum advantage for an application
case from this guide, the QuaST project, or (to our knowledge) in general. Similarly,
there are too many open research questions to definitively answer which algorithmic
settings will yield the best solution to a practical problem. Instead, this guide presents
a comprehensive review of the lessons the QuaST consortium learned from its studies
of several industrially relevant use cases. In parallel, the project developed the QuaST
decision tree, a prototypical framework aiming to enable end users to apply quantum-
assisted algorithms to their optimization problems. Together, users can learn how to
apply quantum algorithms to their problems and what topics one needs to investigate to
improve and tune the algorithms and the solutions they provide.

Put concisely, an industrial optimization problem needs to run through several layers so
a quantum-enhanced algorithm can attempt a solution [2]. First, the high-level business
description needs to be cast into a mathematically precise problem formulation such as the
instance of a common optimization problem class like the Traveling Salesperson Problem
(TSP). Depending on the size of the optimization problem and its characteristics, a
decomposition step follows to break it down into smaller parts, some of which (but usually
not all) should be handled by a quantum computer. Then, the optimization problem
needs to be transformed into a form compatible with a quantum algorithm, often an
Ising problem. This step is called encoding. Afterward, the hybrid algorithm needs to be
selected, e.g., a variational quantum algorithm like Quantum Approximate Optimization
(QAOA) [3] along with its hyperparameters such as the exact quantum circuit to execute.
Analogous choices need to be made for the classical algorithms that are involved, such as
an optimizer for the parameter updates of a variational algorithm. Finally, compilation
and backend options need to be weighed against each other to identify the best available
quantum hardware backend and enable the execution of quantum circuits. All of these
steps require carefully choosing between multiple available options that influence each
other, even between the layers, severely complicating the decision-making process. The
underlying decision tree structure gives rise to the QuaST decision tree, an important
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project to automate and facilitate these decisions for end users.
This compendium complements the QuaST decision tree in gathering and discussing

the application-centric knowledge gained inside the QuaST project. First, the executive
summary in section 2 lists and explains the key findings of the QuaST project. The
specific applications investigated within the QuaST project are presented in section 3.
Even though they remain concise, the remaining sections dive into more technical detail
and can serve as an entry point into the scientific publications the QuaST researchers
produced. The application-centric insights along the layers and topics investigated within
the QuaST project are divided into four chapters: section 4 for the formulation and
encoding, section 5 for the algorithm selection, section 6 for aspects of decomposition and
problem transformations and section 7 for hardware aspects. Our goal is to provide insights
into each of these fields that can serve as a starting point for exploring quantum-assisted
solutions for other use cases enabling further research and development in industrially
applied quantum computing. Ultimately, quantum computing can only be successful if it
comes with a real-life benefit obtained through focused research on the applications.

2 Executive Summary

A quantum advantage for general NP-hard combinatorial optimization problems is unlikely.
Therefore, QuaST brings together partners from science and industry to investigate
specialized quantum-enhanced solutions tailored to specific industrially relevant use cases.
From investigating several applications from logistics to energy networks and software
verification, the project extracted six key findings. These provide a general direction in
which research around quantum-assisted algorithms for combinatorial optimization should
be pursued.

• As of today, there is no quantum advantage (exponential, polynomial, or pre-factor)
for general industrially relevant optimization problems. Promising avenues include
adapting algorithms to specific problems. This requires testing and benchmarking
against specific classical algorithms. Software tools that integrate the different parts
of the solution process are necessary to aid the search for some quantum usefulness.
They enable intermediate-scale testing and benchmarking and finding solution paths
that can inspire fully productive solvers.

• Out-of-the-box solutions with variational quantum algorithms (VQA) need problem-
specific adaptions to produce useful results.

• Modeling industrial problem settings requires much effort and introduces manual
overhead. Within QuaST, we have expanded the range of use cases to translate into
QC-enabling models. The QuaST decision tree is a tool specifically designed to
reduce the expertise and manual work in handling industrial optimization problems.

• For quantum computing in the noisy intermediate-scale quantum era, handling
complex constraints is challenging. Effective and efficient encodings for quantum-
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enhanced algorithms with a good ratio of feasible solutions within the search space
are a key ingredient to successful quantum-assisted algorithms.

• Unspecialized or metaheuristic classical optimization methods have troubles finding
good parameters in QC loss landscapes. We must develop strategies for finding good
parameters for parameterized quantum circuits (fixed angles, good initialization,
tweaked optimizers). Some of these strategies have been advanced within the QuaST
project.

• VQAs produce bitstrings that exhibit high volatility. The correlations extracted
from quantum algorithms are more stable than the bitstrings obtained directly
from sampled VQA outputs, showing promising results (e.g., in algorithms like
Relax-and-Round and QUBO shrinking) and are a possible path forward in the
search for beneficial use of quantum information.

It is part of a realistic view on combinatorial optimization to emphasize how difficult
it is to find good solutions for optimization problems with quantum-enhanced methods.
Every step of the solution process needs to be highly optimized in dependence of each
other, including classical parts and the quantum-classical interfaces and transfer points.
Choosing an algorithm and improving its performance with problem-specific adaptions are
crucial steps in successfully applying quantum computing to industrial use cases. With
the vast array of algorithms available, this can be a daunting task requiring extensive
expert knowledge in different fields such as physics, mathematics and computer science.
Even with the right algorithm, its performance is significantly impacted by the choice of
hyperparameters, optimization methods, and penalty factors. Thus, a holistic view on
the entire solution pipeline is encouraged.

To navigate these complexities and allow for a systematic exploration and algorithm
setup, the QuaST project partners have developed the QuaST decision tree. This software
framework guides users through the process of selecting and improving an algorithm. and
provides a structured approach to answering key questions about the problem, algorithm,
and optimization strategy, ultimately leading to suitable choices for specific use cases.

2.1 The QuaST Decision Tree

The QuaST decision tree [4] gathers, simplifies, organizes and automates the many
decisions on the path from the application to a quantum-enhanced solution. The tree-
like modular structure can be use interactively with the user providing necessary input,
making the choices freely or accepting the recommendations fed to the decision tree by
configurable subroutines (e.g., penalty selection). The flexible and modular framework
can take over any computational task necessary for the solution of optimization problems.
Different modules can be incorporated as “recommendation engines” and may include
even commercial software. Thus, the QuaST decision tree can provide interfaces to any
application-facing optimization routine.

From the beginnings of the QuaST project, the consortium has worked towards estab-
lishing the needs of end users and researchers. The first concept of the QuaST decision
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tree framework [2] indeed dates from the first half of the project. With further research,
the initial layout has been tested and revised for stability, flexibility and robustness. The
ultimate project result is a unified, light-weight software framework that will undergo
further development beyond the QuaST project. It can cover all necessary functions from
the application to the invocation of the hardware, with its basic nodes including:

• Problem Loading: Load a problem from a simple JSON file or generate a random
instance of predefined problem classes.

• Encoding: Encode the problem directly or via an intermediate encoding-independent
step into a QUBO formulation. For constrained problems, this includes penalty
factor selection.

• Algorithm Selection: Select a variational quantum algorithm, or generate a com-
parison benchmark with basic classical methods such as Tabu sampling or even a
brute-force approach.

• Hyperparameter Selection: Tune the algorithm by choosing the necessary hyperpa-
rameters such as the depth and type of the ansatz, mixer Hamiltonian etc.

• Backend Selection: Choose a simulator backend or, depending on your access, a
real quantum computer to send the problem to.

The decision tree provides recommendations in the form of default options for its choices
and provides the necessary framework for automating the algorithm building process at
various levels. It is set up specifically to allow for any community member to add their
own recommendation routines, methods etc. With its modular approach, all information
pertaining to the problem instance can be easily modified, pre- and postprocessed. The
software is in an alpha stage with an ever-growing set of features like batch handling,
decomposition steps and the inclusion of specialized methods from within the QuaST
project. Further developments include the integration with various software stacks such
as the Munich Quantum Portal allowing for a combined access of quantum computing
and conventional high-performance computing resources.
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3 Applications

Quantum computing has the potential to greatly impact various application areas in
the realm of combinatorial optimization problems. These problems are characterized by
a large search space, making it computationally challenging for classical computers to
find optimal, and in some cases even good, solutions. Quantum computers can utilize
phenomena such as superposition and entanglement, which opens up new possibilities for
solving these complex problems more efficiently.

The potential business impact of quantum computing in these application areas is
substantial. Efficient solutions to combinatorial optimization problems can translate
into significant cost savings, increased productivity, and improved operational efficiency.
For important problem classes such as route planning, even small relative increases of
1-2% would have an enormous economic impact justifying the high development costs of
quantum computing.

In combinatorial optimization, the expected advantage from quantum computing can
manifest from two directions:

• The more efficient search through large solution spaces with the aid of algorithms
inspired by Grover search [5].

• The analogy between the tasks of finding the ground state of a physical system (which
minimizes energy) and the minimization of the cost function of an optimization
problem.

This user guide provides a comprehensive resource for identifying potential application
areas and formulating problems with a focus on quantum algorithms like QAOA that aim
at an improvement by encoding the problem solution into the ground state of a physdical
system. With a focus on combinatorial problems and application areas such as network
optimization, route planning, scheduling, and predicting market potential, this guide aims
to help identify viable use cases.

In the following, we briefly introduce six use cases explored in QuaST.

3.1 Network Optimization

Many important real-world challenges can be formulated as network problems, where the
goal is to optimize the flow, allocation, or configuration of resources within a complex
system. Two notable examples of such problems are the unit commitment (UC) problem
in power systems and the factory layout (FL) problem in manufacturing.

In the context of power systems, the increasing integration of renewable energy sources,
driven by decarbonization efforts, has led to significant challenges in the UC problem.
The UC problem involves determining the optimal scheduling of power plants to meet the
anticipated demand while minimizing costs and ensuring system reliability. However, the
inherent variability and uncertainty associated with renewable power generation, such as
wind and solar, make it more difficult to predict the load to be served by conventional
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power plants. In practice, mixed-integer programming (MIP) methods are used to solve
the UC problem.

Similarly, the FL problem, which aims to optimize the arrangement of resources
within a manufacturing facility, can also be viewed as a network optimization problem.
Inadequately planned factory layouts can result in higher operational costs, reduced
efficiency, and longer production lead times. The planning process for factory layouts is
highly complex, as it involves considering multiple parameters simultaneously, such as
machine placement, material flow, and space utilization. This complexity leads to large
solution spaces, making manual planning a time-consuming and challenging task.

3.2 Route Planning

The logistics and transportation industries are currently undergoing a technological
revolution due to the adoption of the Internet of Things (IoT), digitalization, and a strong
focus on reducing carbon emissions. Traditionally, complex optimization problems, such
as coordinating production across multiple facilities, have been solved using classical
algorithms and heuristics. However, there is still room for improvement in speed and
performance. For instance, smart sensors installed on containers in waste management
can optimize collection routes, ensuring that trucks are dispatched efficiently to full
containers. This optimization challenge is known as the Capacitated Vehicle Routing
Problem (CVRP), which due to its complexity, currently relies on heuristic methods for
finding solutions, especially when dealing with large-scale industry challenges involving
hundreds or thousands of nodes. In contrast with the travelling salesperson problem
(TSP), the existence of multiple vehicles in the TSP makes the problem much harder.

Quantum computing can potentially eliminate logistical bottlenecks, leading to more
cost-effective and environmentally friendly route planning. There are several quantum
solution approaches to solving routing problems. A comprehensive study on how to solve
the CVRP using QAOA and VQE is available in reference [6].

3.3 Scheduling

The production process is an essential part of every supply chain. Various facilities
in different places must work together as a unified global virtual factory to maximize
production and minimize costs. However, finding the optimal schedule for each facility
becomes increasingly complex as the production process requires more and more steps.
For instance, the front-end processes of semiconductor production involve 500 to 1000
operations, which have to be allocated to several machines daily.

The primary objective of production scheduling is to maximize the use of available
facilities to complete all production steps in the shortest possible time while maintaining
the order of operations. This optimization challenge is known as the Job-shop Scheduling
Problem (JSSP). A related problem, the Flexible Job-shop Scheduling Problem, considers
operations that can be executed on several machines in the production steps.

A JSSP search space grows exponentially as we increase the number of operations,
machines, and time steps of the production process. In the semiconductor production
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process example, a JSSP model can easily have thousands of operations and hundreds of
machines. This makes the JSSP particularly hard to solve with current classical computers.
One natural question is whether quantum computers have the potential to solve this
problem faster or better.

With the right problem encoding, quantum computing has the potential to solve this
problem more efficiently. A recent paper[7] studied and compared quantum optimization
with quantum annealers (a variation of quantum computers specialized on optimization
problems) versus some classical approaches, to solve the Flexible JSSP. They found that
the solution qualities from quantum annealers were roughly similar or equal to the classical
methods, but the quantum annealers reliably delivered low annealing times.

3.4 Social Networks

Modern digitalized economics require spreading products efficiently through large social
networks of customers and retailers. This has a big influence on the success of marketing
strategies. For example, customers can be organized in communities to share their
experience and their way of problem handling of everyday tasks with a specific product.
This could be in internal networks hosted and guided by the company or in common
social networks that are freely accessible.

The members of these networks are linked or connected, and they can react to other
members’ contributions or inputs with likes, stars, or sharing. Members who are connected
strongly with others because they have a lot of connections and/or many social activities
regarding company topics can be seen as key customers or multiplicators. For companies,
the identification of multiplicators is extremely beneficial as addressing them directly
can support and simplify the communication strategy for commercial purposes or service
issues. In a complex network, this can boost the speed and quality of product information
and increase the brands’ reputation significantly.

Such networks can be mathematically modeled as graphs: The users are the graph’s
vertices (or nodes), and the edges are the direct communications among the participants.
Multiplicators can be seen as a certain subset of the vertices. In that way, separating
this subset from the rest would need to cut a maximum number of edges between the
other vertices. Indeed, identifying the right subset of vertices that maximizes the number
of cuts when separating is a well-known graph-theoretical problem: The maximum cut
probem. The Max-cut problem is known to be NP-hard and an interesting use case to
be solved on a quantum computer, in particular due to its close relationship with Ising
models.

3.5 Predictions of Market Potentials

Allocating resources and budgets efficiently is an essential task in all companies. This is
also true when it comes to a company’s product portfolio, especially when a lot of articles
are available from different product categories. The optimum allocation of resources
and budget, like for communication, sales, and product development, requires a data-
driven decision base. The aim of the Market Potential project is, therefore, to output an
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objectively calculated set of products that are worth investing time and money.
One possibility is to translate the use case into the Modern Portfolio Theory, which goes

back to Harry Markowitz. [8] Initially intended for the composition of stock portfolios
considering investors’ risk appetite (risk-return estimation), it is suitable for any system
in which an objective function should be optimized.

Portfolio optimization is an NP-hard optimization problem. It takes into account
correlated uncertainties in the individual decision variables. The covariance matrix of the
individual decisions encodes the correlation of uncertainties and has a decisive influence
on the final result. It can then be used to predict the market potential of the product
portfolio under a strategy defined by the decision variables (analogous to investment
strategy in the stock market).

Quantum computing has the potential to solve the resulting optimization task more
efficiently and effectively [9]. The main points for improvement are: finding patterns in
small amounts of data only, modeling under uncertainties, and a speed-up advantage for
NP-hard problems.

3.6 Software Verification

Software testing is crucial in the software development lifecycle, ensuring reliability,
security, and functionality. Early verification and validation can lead to significant cost
savings by identifying flaws before they escalate, avoiding costly post-deployment fixes,
and protecting user safety and reputation.

In high-stakes systems, such as medical devices, rigorous testing is vital. The Therac-25
incident [10] exemplifies the dire consequences of inadequate testing, highlighting the
need for thorough methods. In theory, the ideal method is formal verification, which uses
mathematical proofs to ensure the correct output of the software.

Formal verification involves creating mathematical models to verify software against
a formal specification, including expected inputs, outputs, and behavioral rules. For
instance, a banking system must ensure account balances never go negative. Various
techniques exist for building abstract models from source code and specifications, including
symbolic execution and reachability analysis. Ultimately, the problem of deciding whether
a software is correct translates to deciding the satisfiability of a Boolean formula. Despite
its advantages, formal verification faces challenges when handling modern and complex
pieces of software. Rice’s theorem [11] limits the properties that can be verified, and the
halting problem is undecidable.

Quantum computing might give rise to algorithms that allow these processes to be
performed more efficiently or even at all. This might lead to higher adoption of systematic
verification and more secure and reliable software.
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4 From the Application to the Cost Function

From the mathematical side, an optimization problem is defined by a cost function that
needs to be minimized as well as a search space of candidate solutions, often restricted
through constraints. For the same industry use case and the same optimization goal,
there are often multiple ways of formulating the cost function and constraints. In this
section, some topics are discussed that should be considered when weighing the options
against each other, as well as some tools that can help:

• Section 4.1 brings attention to a very important topic, namely the densitiy or
sparsity of encodings. Since complicated constraints are a significant obstacle for the
success of quantum algorithms, the ratio of feasible solutions (i. e. those, that satisfy
the given constraints) is an important ingredient into choosing good encodings.

• Section 4.2 considers the more general task of representing data on a quantum
computer, with different types of data admitting for different encodings. These pure
data-based encoding techniques can help and inspire the data representation tasks
in combinatorial optimization, e.g., when it comes to input data or mapping of bit
strings to solutions.

• Section 4.3 tackles the important question how industry problems where solutions
typically need to satisfy constraints can be solved with formulations such as quadratic
unconstrained binary optimization (QUBO).

• Section 4.4 complements the previous section in reporting condensed results on
the choice of a penalty factor for specific constraints to incorporate them into a
mathematically unconstrained cost function.

• Section 4.5 describes an intermediate formulation step called the encoding-independent
formulation and discusses advantages and disadvantages of this additional step.

• Section 4.6 highlights an innovative method to reduce the memory overhead for
quantum circuits provided certain conditions are met that allow storing multiple
binary variables into the same qubit.

4.1 Dense and Sparse Encodings

When solving a problem on a quantum computer, it is necessary to encode it in a way
where it can be represented with qubits. For quantum optimization algorithms like VQE
and QAOA, measured states are interpreted as bitstrings that can be mapped to solutions
for the the optimization problem. Generally, there are many options for choosing an
encoding for a specific problem. When choosing such an encoding, there is a trade-off
between the density of the encoding and the order of the Hamiltonian (i. e., whether it is
quadratic or has terms containing more than two variables). While dense encodings use
fewer qubits and produce fewer infeasible bitstrings that do not correspond to a valid
solution, the Hamiltonian for such an encoding tends to have higher order terms than.
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These higher order terms can be potentially problematic when implemented on a quantum
computer.

For example for the Travelling Salesperson Problem (TSP), a common encoding results
in a Quadratic Unconstrained Binary Optimization (QUBO) form. For n nodes in the
graph, each timestep t ∈ {1, ..., n} uses a one-hot encoding to denote the index of the
node visited. Therefore, the binary variable xit is the indicator for the statement “Node i
is visited at time step t”. If the statement is true, it is 1, otherwise 0. Given an encoding
of a valid route, the length of the route to be minimized can then be evaluated via the
quadratic cost cuntion

Cd =
n∑
i=1

n∑
j=1

wij

n∑
t=1

xitxjt+1 (1)

with the distance between nodes i and j given as wij . However, many variable assignments
will lead to infeasible states. This is the case if either multiple cities are visited at the
same time step, i.e. the one-hot encoding contains multiple ones, or if the same city is
visited multiple times in one route. To combat these infeasible solutions, the QUBO
encoding introduces penalty terms

C1
p = P

n∑
i=1

(
1−

n∑
t=1

xit

)2

, (2a)

C2
p = P

n∑
t=1

(
1−

n∑
i=1

xit

)2

(2b)

with a large enough penalty factor P . The resulting QUBO formula from combining these
terms can then be transformed into a Hamiltonian in order to evaluate energies during
optimization. Effectively, the quantum algorithm then solves an unconstrained problems.

Through Higher Order Binary Optimization (HOBO) encodings [12], the portion of
feasible solutions out of all candidates can be increased. Instead of denoting the (integer)
label of a node at a timestep t with one-hot encoding, this encoding represents the label
by a binary number bt. For this encoding, the first part of the Hamiltonian Hvalid ensures
that the binary index for a timestep does not exceed the number of nodes in the graph.
Let b̃K−1 . . . b̃0 be a binary representation of n− 1 and define k0 ∈ K0 to be indices such
that b̃k0 = 0. Then the function Hvalid takes the form

Hvalid(bt) :=
∑
k0∈K0

bt,k0

K−1∏
k=k0+1

(
1− (bt,k − b̃k)

2
)
. (3)

Additionally, the Hamiltonian term Hδ is constructed to compare two binary numbers,
evaluating to one if they are equal and zero otherwise. This function determines the
timesteps at which nodes are visited. All in all, Hδ is defined as

Hδ(b, b
′) :=

K∏
k=1

(
1− (bk − b′k)

2
)
. (4)
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The full Hamiltonian for the HOBO encoding is given by

C = P
n∑
t=1

Hvalid(bt) + P
n∑
t=1

n∑
t′=t+1

Hδ(bt, bt′)

+
n∑
i=1

n∑
j=1

wij

n∑
t=1

Hδ(bt, i)Hδ(bt+1, j).

(5)

Similarly to the QUBO encoding, this formula can be used to create a Hamiltonian
which maps quantum states to energies according to the problem structure. However, the
interpretation of the single variables is much less evident.

Third, an ideally dense encoding is the permutation encoding [13]. It algorithmically
maps every measured state to a valid TSP solution. While this encoding produces only
feasible solutions and uses fewer qubits, there is no known efficient construction of a
Hamiltonian. Hence, this method is limited to methods like VQE where the Hamiltonian
does not need to be implemented on q autnum computer. For those methods, a classical
function can be applied to the measured bitstrings to evaluate the energies for the
optimization. Depending on the problem, this classical evaluation can be performed
efficiently. For small TSP instances, it has been found that the density of the encodings
is strongly correlated with the performance of the optimization with denser encodings
generally producing better results [13]. Specifically, the permutation encoding performs
significantly better than the HOBO and QUBO encoding. Yet, the optimization for
the permutation encoding seems more unstable. This might point toward the algorithm
struggling to identify the properties of the problem and instead finding a solution by
sampling random guesses.

To summarize, for novel applications, different encodings should be considered to
transform it into a mathematical problem. Typically, there is a trade-off between simplicity
of the encoding and density of the feasible solutions. Ultimately, the encodings need to
be tested in how quantum algorithms can travel the loss landscapes efficiently.

4.2 Considerations for Representing Data on a QC @Thomas

Necessarily, each algorithm and optimization method needs application-specific data.
Therefore, one needs to represent the data of different types on a quantum device. Whereas
an encoding for quantum annealers most often requires the definition of a problem-specific
Hamiltonian which is directly mapped to the annealing hardware topology, there is a
considerably larger variation on gate-based quantum devices. By chosing an appropriate
representation, different kinds of advantages become available to applicationers. For
example, if the application requires the manipulation of images, a dense encoding may be
used to represent and process all pixels simultaneously due to the superposition principle,
while a later retrieval by measurement is typically very cumbersome. On the other hand,
less dense representations often require more computational resources, e.g., the number of
required qubits, and a detailed bookkeeping at the benefit of enabling an easier information
retrieval after the algorithm. The specific application determines this trade-off and guides
towards a selection of well-suited data representations. Since a detailed overview over
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many different data types is out of scope for this report, we exemplify our approach with
images, since they are one of the most important data types in data processing. Many
other types of data such as matrices, time series or graphs can be trivially represented by
images.

The currently most widely used format is the Novel Enhanced Quantum Representation
(NEQR) [14] of digital images due to its ability to retrieve pixels accurately by projective
measurement 1. Put briefly, NEQR represents a 2n × 2n b-bit image via a quantum
state incorporating b qubits for the pixel intensity and 2n qubits (in the two-dimensional
case) for the pixel indices determining its location on the image. A superposition on
the position qubits is generated by applying Hadamard gates, thus the collection of
these qubits contains data for every single pixel index. Consequently, the quantum
state of NEQR represents all pixels and all possible color values at once, contrary to a
classical dense data structures. A subsequent unitary transformation is required to set
the pixel value for each pixel, i.e., in NEQR there is a sequence of 22n unitary gates, each
considering some pixel position and setting its value. In short, a 2n × 2n b-bit image f
can be represented in NEQR via the quantum state

|I⟩ = 2−n
2n−1∑
x,y=0

|f(x, y)⟩ |y⟩ |x⟩ .

Image processing algorithms can now exploit the compact encoding by modifying all
pixels simultaneously. For example, consider the inversion of the pixel grayscale value
by means of inverting the bit string representing the value, e.g., in an 8-bit image this
maps the color 85 = 0b01010101 7→ 0b10101010 = 170. Both in classical and quantum
implementations, such a bitflip operation is executed by applying a NOT gate on each
bit or qubit, respectively. When applied to NEQR, one applies the Pauli X gate on all
intensity qubits and thus flips the intensity values of all pixels simultaneously. After
processing, the image may be obtained by a measurement which yields (disregarding
noise) a bitstring representing the position and color of a single pixel. In order to retrieve
the overall image, O(M2M ), where M = 2n+ b, measurements are required [16].

Clearly, there is a tradeoff between the compactness of the image representation and
the effort needed to retrieve its information. Particularly dense encodings therefore show
their benefit when only some general properties of the processed image are needed that
can be obtained with fewer measurements. In general, the readout complexity can be
reduced by employing quantum algorithms that only need specific bits of information on
the quantum state.

Naturally, there exist representations dedicated to specific data structures. For opti-
mization problems, important data often comes in the form of a graph. For example, an

1Other representations, e.g., the Flexible Representation of Quantum Images (FRQI) [15], compress
information like color in a single qubit as its probability amplitude. The latter implies that any
measurement retrieves the color information only by statistical considerations, rendering accurate
measurements impossible with a finite amount of measurements [14]. Even more so, when considering
real hardware, the physical noise may also corrupt the measurement results.
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undirected loop-free 2 graph G = (V,E) consisting of vertices V and edges E may be
represented as a graph state |G⟩ =

∏
{a,b}∈E Uab |+⟩⊗|V |, where each vertex is encoded

in a single qubit. The edges are represented by considering that an edge resembles an
interaction between two particles, thus any edge {a, b} corresponds to a unitary gate Uab
acting on the qubits a and b. The complexity of such an encoding clearly depends on
the underlying graph, but is very economic in the amount of gates that are needed to
produce the superposition and under the consideration that many real-world graphs are
rather sparse.

A broader overview over many more data types and their quantum representations can
be found in [17].

4.3 Handling Constraints

A QUBO is, by definition, an unconstrained problem in the form of the following equation:

f(x) =

n−1∑
i=1

n∑
j>1

qijxixj +

n∑
i=1

qiixi, (6)

where xi are the problem’s binary variables, n the number of variables and qij the
coefficients of the QUBO matrix.

However, most problems of interest contain constraints, e.g. in the Traveling Salesperson
Problem (TSP) each city may be visited only once. Thus, it is essential that constrained
problems are first transformed into unconstrained problems to make use of QUIBO
formulations. This transformation, in practice, means that constraints must be encoded
as penalty terms, such that invalid solutions are penalized and valid solutions not. Then,
the algorithm will automatically treat the infeasible solutions as inferior ones to feasible
ones. Mathematically, one distinguishes between two types of constraints: Equality
Constraints and Inequality Constraints.

Equality Constraints are generally easier to incorporate into the problem formulation.
Let’s consider a general equality constraint of the form:

n∑
i=1

cixi = M, ci ∈ R (7)

One can encode this constraint into the QUBO formulation by including the following
penalty term:

P

(
n∑
i=1

cixi −M

)2

, (8)

where P is a n appropriately chosen penalty factor such that invalid solutions are penalized,
with the best valid solutions becoming the lowest energy solutions of the QUBO. For a

2A graph is loop-free if there are no direct edges from a node to itself, whereas cycles involving several
nodes are valid, as opposed to an acyclical graph.
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more detailed explanation on how to choose P and how it affects the solution quality,
see section 4.4. Note that if a solution is valid,

∑n
i=1 cixi = M and thus the penalty is 0.

However, if a solution is invalid, whether because
∑n

i=1 cixi < M or
∑n

i=1 cixi > M , the
solution is penalized.

Inequality Constraints, however, are a more complicated case. Let’s also consider a
general inequality constraint of the form:

n∑
i=1

aixi ≤ L, ai ∈ Z (9)

The typical method for encoding a constraint of this form into a QUBO formulation is
by using Slack Variables, that is, extra variables. The general idea is to first rewrite the
inequality constraint using these slack variables, turning it into an equality constraint:

n∑
i=1

aixi = DS, (10)

where S are the slack variables and D the coefficients associated with them. The number
of slack variables m needed to encode a particular constraint is given by the number
of variables needed for the binary expansion of L, which has complexity O(log(L+ 1)).
Finally, once this transformation has been made, the resulting equality constraint can be
encoded into the QUBO using the same approach as in eq. (8). One should note that
slack variables lead to an increase not only in the number of qubits needed but also in
the depth of the circuit (since more linear and quadratic quantum gates are needed to
represent the interactions added by the slack variables). More specifically, the number of
linear terms grows with O(m) and the number of quadratic terms with O(nm+m2).

A method for limiting the number of slack variables needed and consequently both the
number of qubits of the resulting circuit and the number of gates is developed in [18].
The basic idea is to divide both sides of eq. (9) by a value ρ. For instance, if ρ = L, then
the right side of the constraint becomes 1 and a single slack variable is needed to encode
the constraint. However, one should be aware that such a method is an approximation.

More recently, a method has been developed to encode inequality constraints without
slack variables [19]. It works as follows. One starts by approximating the inequality
constraint of eq. (9) given by:

L−
n∑
i=1

aixi ≥ 0 (11)

using the second-order expansion of the exponential decay function (since a QUBO has
at most quadratic terms) and then introduces this function as a penalty term into the
QUBO formulation. The method was empirically shown to achieve a higher probability of
finding the optimal solution to some combinatorial optimization problems while requiring
no slack variables and hence no additional qubits or quantum gates [19].

Beyond transforming optimization problems into unconstrained versions, some algo-
rithms can be tuned in order to only explore parts of the solution space [20]. However,
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their practical realization is often only efficient enough for current devices for very simple
constraints such as Hamming weight preservation (i. e., the number of 1’s in the output
bitstring is fixed). Therefore, penalty-based formulations currently provide the easier
path to formulate combinatorial optimization problems with constraints.

4.4 Penalty Factor Selection

The penalty factor P in eq. (8) plays a crucial role in shaping the cost landscape and
influencing the optimization process. It ensures that the optimization algorithm favors
valid solutions over invalid ones. From a mathematical standpoint, there is a minimal
penalty factor needed to ensure that the optimal feasible solution has a lower effective
cost than the lowest infeasible solution. In practice, penalty factors need to be estimated
and are often chosen in a way such that all feasible solutions have a lower cost than the
best infeasible solution.

As the penalty factor increases, more local minima are introduced into the cost landscape,
resulting in a rougher surface. Figures 1 illustrate this effect, where a higher penalty
factor (P) leads to a more rugged cost landscape.

(a) Optimized penality factor (b) Large penalty factor
Figure 1: Cost landscape of a one layer QAOA with four qubits with different penalty

factors.

When selecting the value of the penalty factor, there is a trade-off to consider:

• If the penalty factor is too low, invalid solutions may become optimal in terms of
the cost function, leading to suboptimal or incorrect results.

• If the penalty factor is too high, the cost landscape becomes increasingly difficult
to optimize, with numerous local minima that can trap optimization algorithms,
especially local optimizers.
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Empirically, a penalty factor that is too high can also result in a loss of accuracy: The
resulting algorithm may not distinguish anymore between the quality of two feasible
solutions and thus effectively produces feasible solutions (but not optimal ones) at random.
Depending on the use case, producing feasible solutions can be hard (e.g., creating a valid
shift plan for a company) or easy (e.g., a TSP route containing each city exactly once).

Choosing an appropriate penalty factor value is crucial for achieving good optimization
performance. However, significant performance differences empirically appear with drastic
changes in the penalty (compared to the scale of the cost function, e.g. typical length
differences of TSP routes). A balance must be struck between penalizing invalid solutions
sufficiently while maintaining a cost landscape that is amenable to optimization algorithms.
In some cases, it may be necessary to employ techniques such as adaptive penalty factor
adjustment or incorporate problem-specific knowledge to select an effective penalty factor
value. Since the feasibility of solutions can typically be verified easily in the case of
NP-hard optimization problems, it is recommended to always check for feasibility in
practice to ensure that the penalty factor was not too small.

4.5 Encoding-Independent Formulation

Solutions of an optimization problems need to be represented as bitstrings comprised
of binary variables. The cost function maps the individual strings on their respective
function value. However, many optimization problems have no native representation in
binary variables. Instead, it can be useful to employ an intermediate representation with
discrete integer variables. From the QuaST project, this has been proposed in [21]. A
central advantage is the increased modularity of such an approach: A new optimization
use case only needs to be translated into one encoding-independent representation after
which no additional work is needed to take the step to binary variables.

Following [21], the conversion of the integer cost function to a binary one is achieved
with value indicator functions relating the integer variables to bitstrings. This allows an
elegant, but theoretical representation of the cost function and problem-specific constraints.
Additionally, so-called core constraints are introduced that ensure that the bitstring leads
to a valid integer variable. For example, bitstrings of the one-hot encoding must contain
a single 1 and be 0 otherwise. The full problem formulation is then given by the binary
cost function, the problem-specific constraints as well as the core constraints. Optionally,
some (or all) constrains can be included in the cost Hamiltonian through penalization.
Ultimately, the handling of the constraints is left to the algorithm.

Ref. [21] showcases the encoding-independent formulation for a range of optimization
problems and encodings. Further attempts at using the theoretical foundation for a
practical implementation of the QuaST decision tree proved to lead to a significant
computational overhead, however. The symbolic computations required to resolve the
indicator functions in the cost function lead to a slow, cumbersome process. In conclusion,
the encoding-independent formulation is still useful at enabling multiple different encodings
easily, but solutions optimizes for production should implement direct encoding methods
from the application.
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4.6 Reducing Memory Footprint by Random Access Coding

In the case that the memory need is about twice as high as the hardware provides, there
is an encoding technique, that might allow the problem to still be evaluated. This is
possible with Random Access Codes, that allow up to three variables to be encoded in a
single qubit. We will use the code on the QUBO formulation and briefly explain what
drawbacks it carries.

To pack three variables into one qubit, they are encoded in different bases. This is only
possible if the variables commute, a specific property that makes them compatible. A
sufficient test is for the corresponding vertices in the weighted graph, given by the QUBO,
to have the same color in any valid coloring.

Encoding three variables in one qubit does come with problems. A measurement can
only target a single variable and only extracts the correct value with high probability.
It is therefore necessary otfperform the procedure multiple times, while measuring in
different bases to allow all values to be extracted.

At the same time, the new QUBO is a relaxation of the original one, with some
interesting properties. While there might be better solutions added, than there were
before, they turn out to be linear combinations of the original optimal solutions. Measuring
the new optimum, rounds them to the original optimum. This adds a bit of tolerance
to the optimization procedure. Here, a new problem arises. There is no guarantuee to
measure the same optimum in every repetition. A rounding schema is needed to interpret
the results.

In conclusion, the procedure can allow oversized problems to still be executed, at
the cost of a higher number of repetitions and the need for schemus to interpret and
incorporate the measurement results.
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5 Choosing and Improving the Algorithm

After an application has been encoded into a concrete optimization problem, an algo-
rithm needs to be selected for its solution. From the quantum and classical algorithms
at hand, the QuaST project has been focused on variational algorithms, namely the
variational quantum eigensolver (VQE) and the quantum approximate optimization algo-
rithm (QAOA). These algorithms have been evaluated. It turns out that the classical
optimization is hugely important for the success of the algorithm. The best algorithm
always depends on the exact problem formulation, structure of the solution space as well
as the available quantum and classical computing resources.

For completeness, this chapter starts with a short description of VQE and QAOA.
Afterwards, several aspects and improvements from within the QuaST projects are
discussed:

• Section 5.2 discusses evaluation methods for quantum-assisted algorithms, in partic-
ular which metrics can be used to assess their performance and solution quality.

• Section 5.3 attempts to eliminate or reduce the load caused by the variational
parameter updates in QAOA.

• Section 5.4 discusses general aspects about the classical optimization routine, namely
considerations to use global or local optimizers for variational algorithms.

• Section 5.5 showcases how post-processing VQA results can help in obtaining better
solutions.

5.1 Basic Algorithms

5.1.1 VQE

The Variational Quantum Eigensolver (VQE), introduced in [22], has garnered considerable
attention from the research community in recent years. By leveraging the variational
principle, VQE is capable of calculating the ground state energy of a Hamiltonian, a
crucial task in quantum chemistry and materials science. Additionally, VQE has been
used to solve optimization problems. The limitations of conventional computing methods,
which struggle to accurately model the exponentially growing electronic wave function
of many-electron systems, make VQE an attractive solution. By enabling the modeling
of these complex wave functions in polynomial time, VQE is one of the most promising
near-term applications of quantum computing. For a detailed description as well as
additional application areas we refer the reader to [23].

5.1.2 QAOA

The Quantum Approximate Optimization Algorithm (QAOA) is a hybrid quantum-
classical algorithm designed to solve combinatorial optimization problems. It is particularly
well-suited for NISQ (Noisy Intermediate-Scale Quantum) devices due to its relatively
shallow quantum circuits and has been widely studied in recent literature.
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QAOA uses a parameterized quantum circuit called an ansatz, that applies alternating
layers of unitary operations based on two Hamiltonians: The cost Hamiltonian Unitary
UC(γ) = e−iγHC (sometimes also referred to as the problem Hamiltonian), which is based
on the Ising formulation of the QUBO problem and has been established in section 4,
and a mixing Hamiltonian Unitary UM (γ) = e−iβHM .

The full QAOA circuit alternates between these two unitaries for p layers, where p
can be seen as a hyperparameter that controls the algorithm’s accuracy. The final state
prepared by the quantum circuit is:

|ϕ(β, γ)⟩ = UM (βp)UC(γp)...UM (β1)UC(γ1)|+⟩⊗n (12)

After this quantum state has been prepared, the expectation value of the cost Hamilto-
nian C(β, γ) = ⟨ϕ(β, γ)|HC |ϕ(β, γ)⟩ is estimated. This expectation value serves as the
objective function for a classical optimizer, which adjusts the parameters β and γ to
minimize the cost. The classical optimizer iteratively refines the parameters β and γ
until convergence, ideally finding parameters that prepare a quantum state that closely
approximates the optimal solution to the problem (see section 5.4). However, another
strategy for the selection of these parameters can be based on fixed-parameter strategies
(see section 5.3), bypassing a possible time- and resource-consumning optimization process.

Once a set of (sub-) optimal parameters are found, the quantum circuit is run using
these parameters, and the resulting state is measured in the computational basis. The
measurement results correspond to candidate solutions to the optimization problem, and
the best solution is chosen based on the cost function value.

The optimization of the parameters β and γ can be a challenging task and the selection
of the classical optimizers and the right initialization of the parameters is crucial for the
performance of the algorithm. Additionally, the number of layers as well as the previously
defined cost Hamiltonian greatly influence the solution quality.

5.2 Performance Metrics

The performance of quantum computing solutions is currently measured with a varied
set of performance metrics. Ultimately, application-level metrics [24] are the closest
to the final goal of improving industrial optimization problems. However, in practice,
derived metrics are used frequently to evaluate specific aspects of a solution. In principle,
algorithm performance can be evaluated in different aspects: performance in speed,
performance in accuracy, performance in probability and performance in scale. Typically,
these performance metrics are not indepentend. For example, a better accuracy needs
also a better performance in probability and often leads into a better scalability as well.

5.2.1 Performance in Speed

Performance in speed is what everybody expects when talking about quantum computing.
It forms the most basic and perhaps most pure form of quantum advantage: A quantum
computer carries out a specific computation faster than a classical computer. This should
result in finding a problem’s solution faster with appropriate quantum algorithm than it
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Figure 2: Comparison of Max-Cut between Simulated and Quantum Annealing (Hybrid
Solver)

would be possible with any classical approach. However, no one could show a practical
quantum advantage so far. Present-day NISQ quantum computers are not yet big and
powerful enough to be able to achieve this. Hence, performance in speed is not yet the
main focus when doing research on solving of industrial optimization problems.

5.2.2 Performance in Accuracy

Performance in accuracy helps monitoring if better results are achievable with the use of
quantum algorithms than with classical approaches in a similar time frame. This is par-
ticularly relevant for optimization problems where the quality of efficient approximations
is bounded, or where typical algorithms cannot be easily tuned to invest more runtime
into a better approximation. With quantum annealing, especially when using a hybrid
solver, a better accuracy can be observed already on problem sizes that are relevant for
real-world use cases - under certain circumstances. In an exemplary manner, this can be
seen in fig. 2 that shows the results when looking for MaxCut values on sparse graphs
representing communication structures on a social network (also refer to section 3.4). The
investigated graphs are randomly generated with up to 40,000 nodes.

To build reference results (on bigger graphs, the real MaxCut value can no longer
be reliably determined), a time-intensive classical computation with simulated annealing
(SA) is performed (blue line in Fig. 2). The time invest for the reference results is up to
200 minutes for the 40,000 nodes graph that corresponds to 3 hours and 20 minutes.

The quantum annealing (QA) experiments need only up to 4 minutes for the 40,000
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Figure 3: QAOA: Ion Trap vs. Superconducting vs. Random Guess

nodes graph to achieve heuristic MaxCut results which are indeed lower (worse) than
the reference values (yellow line in Fig. 2). However, when comparing these results with
a SA configuration that runs in a similar time window as the QA algorithm of about
5 minutes (green curve in Fig. 2), QA delivers the better results, especially when the
problem size increases. With the same invest of time, QA (hybrid solver) has a better
accuracy than SA when solving MaxCut problems on sparse graphs.

5.2.3 Performance in Probability

Because of the probabilistic nature of a quantum computer, an interesting performance
metric is the probability of finding the optimum solution, or a solution of a specific quality.
A quantum algorithm is typically designed to deliver the sought result with a maximum
probability compared to all other results. Unfortunately, this is not easy to achieve in
many practical cases. The probability of the optimum result can be veiled depending
on the problem size, the noise behavior of the specific quantum device or the chosen
hyperparameters of the particular algorithm. In the worst case, the QC acts like a slot
machine and just guesses randomly solutions.

Each problem has a certain probability for predicting the optimum solution accidentally
depending on the problem type and size. This probability can be seen as the statistical
threshold. The performance in probability metric measures how much the quantum
algorithm outperforms this threshold.

For example, fig. 3 illustrates this for the portfolio optimization problem, based on
Markowitz Portfolio Theory. For details of the corresponding use case refer to section 3.5.
The diagram shows the comparison of an ion trap (green curve) and a superconducting
quantum computer (blue curve) with the statistical threshold for just guessing the
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optimum solution (red curve). The x-axis shows the problem size, meaning here the
number of considered products for which the optimum resource allocation is sought. The
y-axis displays the probability. The result shows that already at the problem size of 7
products the superconducting QC is guessing the solution while the ion trap QC delivers
the optimum solution still with a certain higher probability. That suggests that an ion
trap quantum computer works better for this particular use case in the sense that it
delivers the desired optimum solution with a higher probability. That typically also leads
to a better accuracy than using a superconducting device.

Another example how performance in probability can be depicted, can also be explained
based on the social network MaxCut problem. It is illustrated on a small 10 nodes toy
example for a social network. The use of a gate-based ion trap quantum computer only
allows currently experiments with small problem sizes with the access to up to 12 qubits.
The example graph and its individual statistical distribution of all possible cut values are
depicted in fig. 4

(a) Social Network Graph (b) Statistical Cut Distribution
Figure 4: Social Network MaxCut Problem (10 Nodes)

The natural cut distribution of the graph (shown in fig. 4b) can be compared to the
result histograms of the used quantum algorithm. In fig. 5 the comparison with QAOA
result histograms is illustrated for different p-factors, with 11 being the MaxCut value.
The four diagrams show that even with p-factor of one, there is a shift to the right
of the QAOA histogram compared to the pure statistical cut distribution, meaning a
shift into the direction of the MaxCut value that the algorithm is looking for. With
increasing p-factor the shift in MaxCut direction gets stronger up to the p-factor of 4.
Then, the QAOA result distribution approximates the statistical distribution. Finally
with p = 7, the QAOA histogram only coincides with the natural cut distribution of the
graph (fig. 5d). At this point, the quantum computer is just guessing the result, and the
MaxCut values cannot be found anymore (no red bar on the MaxCut value of 11 in
fig. 5d).

This performance metric representation shows that for this specific optimization problem
the optimal value for the hyperparameter p of the QAOA algorithm is four.
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(a) p = 1 (b) p = 2

(c) p = 4 (d) p = 7
Figure 5: QAOA MaxCut Results

5.2.4 Performance in Scale

Performance in scale is a metric to extrapolate towards industrial problem sizes to estimate
what to expect when solving specific real-world problems. There are two aspects that
needs to be considered: First, what is the maximum problem size of a particular problem
that can be solved on a real quantum computer? Second, where is the limit of the
algorithm itself? That means what is the maximum problem size to be solved on an
ideal quantum computer running without any errors during the computation? An ideal
quantum computer can be simulated by an quantum simulator without using any noise
model.

An example for performance in scale with quantum annealers for solving certain
MaxCut problems in context of social network analysis is shown in Fig. 2. The graphic
shows clearly the increasing gap between the cut results of the quantum annealer (yellow
curve) and the simulated annealing algorithm (green curve) when computations are done
in similar runtimes (Fig. 6).

5.3 Fixed-angle QAOA

As a variational algorithm, QAOA relies on alternating classical and quantum computa-
tional steps. The quantum computer calculates the cost function for a specific parameter
set, then the classical optimizer performs an optimization of the parameters. However, this
iterative procedure leads to a large communication overhead and, in general, inefficient
use of the computational resources. Furthermore, the optimization landscapes of such
algorithms are known to be swamped with bad local minima [25] and, depending on the
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Figure 6: Runtimes of QA and SA in Dependence of Graph Size

ansatz and observables, they can exhibit Barren Plateaus (BPs). There, the variance
of the gradient decays exponentially with the number of qubits or, in other words, that
the loss function is concentrated. In practice, if a circuit exhibits BPs, they become
untrainable as the number of qubits increases for both gradient-based and gradient-free
methods [26]. Last, gradient-based optimization is quite expensive on a real quantum
computer since the computation of a single gradient, e. g. by the parameter-shift rule [27]
requires many evaluations of the cost function. While on simulators efficient techniques
such as Backpropagation and Adjoint Differentiation can be used, on real hardware they
require 2 circuit executions for each parameter, in total 2 × p executions for a p-layer
QAOA.

For these reasons, fixed-angle QAOA-based methods are of interest, where the angles
are initialized using some heuristic and no optimization is necessary.

5.3.1 Tree angles

If a given problem graph G(V,E) is sufficiently sparse, then the distance-p subgraphs of
the individual nodes or edges of the graph are not expected to contain many loops. This
would mean that these subgraphs are with high probability trees, i.e. graphs without any
loops. If the problem graph has fixed regularity d, meaning that every node has exactly d
neighbors, these subgraphs would be d-regular trees with high probability. It is a well
known fact that a sequence of tensors associated to a tree structure can be contracted
with a cost that scales exponentially with the depth p. The cost scaling of computing local
expectation values in such cases is thus crucially not exponential, but at most polynomial,
in the number of nodes |V | of the problem graph.

The evaluation of the cost function of a QAOA circuit for a d-regular graph problem
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can be expressed as such tensor-network contractions over trees. The contraction sequence
from outer leaf to root of the tree can be written down in anylytical form as recursive
formulae. These formulae can be minimized to give (near-)optimal QAOA angles in order
to solve unweighted QUBO problems on regular graphs [28].

The tree angles can however also be reused in different scenarios. Either as fixed,
and hopefully near-optimal angles, or alternatively as initializations for the optimizer.
For example, if the problem graph has average regularity d = 1

|V |
∑

i∈V di ≪ N with
small standard error, meaning that the graph is sparse but not regular, the tree angles
should still give good results. An example of such cases are unweigthed QUBO problems
on Erdös-Rényi graphs with fixed average regularity d. For weighted problems defined
on sparse graphs, the approach can be twofold: either the formulas in Ref. [28] can be
modified to explicitly incorporate the weights, either a first initial guess can be simply
provided by the unweigthed case, where the unweigthed angles should be renormalized by
the average weigth.

5.3.2 Linear Ramp Initialization

In [29], the authors initialize the parameters using a linear-ramp schedule, which is
inspired by Quantum Annealing Theory. Given the parameters ∆β and ∆γ and a number
of layers p, the parameters β and γ are initialized as:

βi = (1− 1

p
)△β and γi =

i+ 1

p
△γ (13)

Thus, one can execute the resulting quantum circuit with no need for further optimiza-
tion. Furthermore, the authors of [29] propose the following conjecture:

p(x∗) = 1/2νNq/p, (14)

where p(x∗) is the probability of sampling the optimal solution x∗ to the original
problem, ν a factor and Nq the number of qubits and p the number of layers. In particular,
one can see that, if Nq = p, the probability of finding the optimal solution remains constant.
In other words, if this conjecture holds true (and [29] provide empirical evidence), the
probability of the optimal solution would remain constant independent of the problem
size if the number of layers equals the number of qubits. However, this comes at the cost
of an increasing circuit depth.

5.4 Global and Local Optimization

5.4.1 Cost Landscapes

The shape of the cost landscape for a given problem is influenced by various parameters
that depend on the specific problem at hand and the characteristics of the algorithm being
used. These parameters can significantly impact the performance of classical optimization
methods, making it crucial to thoroughly examine their impact on the underlying cost
landscape.
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Figure 7: Comparison of local and global optimizer on a random one layer QAOA instance.

The cost landscape represents the objective function or the cost function that needs
to be optimized. The shape of this landscape can vary from smooth and convex (easy
to optimize) to highly non-convex with multiple local minima or maxima (difficult to
optimize). The presence of local minima or maxima can cause optimization algorithms,
especially local optimizers, to get trapped and fail to find the global optimum.

In the context of quantum algorithms like QAOA (Quantum Approximate Optimization
Algorithm) and VQE (Variational Quantum Eigensolver), the cost landscape can be influ-
enced by factors such as the problem size, the choice of ansatz (the parameterized quantum
circuit), and the specific problem instance being solved. Even for well-designed QAOA
cost landscapes, optimization can remain challenging, particularly for local optimizers, as
discussed in Section 5.

The parameters of most of the variational quantum algorithms covered in this guide can
be optimized with a classical optimizer. The large class of optimizers can be seperated in
local and global optimizers.

Global optimization algorithms aim to find the best solution by exploring the entire
feasible search space, considering all possible combinations of variables and constraints.
These algorithms are designed to locate the global minimum or maximum of a given
objective function. However, global optimization techniques can be computationally
expensive, especially for problems with large search spaces or complex constraints.

Local optimization algorithms on the other hand, focus on finding the best solution
within a specific region of the search space, typically starting from an initial guess or
point. These algorithms analyze the local behavior of the objective function near the
starting point and iteratively improve the solution by moving towards a nearby minimum
or maximum. Local optimization methods are generally faster and more efficient than
global optimizers, as they do not explore the entire search space. However, they can get
trapped in local minima or maxima, and their effectiveness heavily depends on the quality
of the initial starting point.

A illustration of the two optimization regimes is depicted in figure 7. In both surface
plots, the same loss landscape of a representative instance of a one layer QAOA is shown.

29



In the left plot, three randomly initiated local optimizers converge to three different
minima, of which only one is the global minima. In the right plot, an instance of a global
optimizer is depicted which converges to the global minima.

When choosing between global and local optimization algorithms, it is essential to
consider the trade-off between the computational cost and the desired solution quality.
Global optimization algorithms are more likely to find the global optimum, but can
be computationally expensive, especially for large-scale problems. Local optimization
algorithms are often more efficient but may converge to suboptimal solutions if the initial
starting point is not well-chosen or if the objective function has multiple local minima or
maxima.

5.5 Quantum Relax-and-Round (QRR)

QRR is a classical post-processing method, inspired by the classical relax-and-round
algorithm, that might increase overall performance for certain problems, and can be
applied on the bitstrings sampled from a quantum algorithm. It was first proposed by
Maxime Dupont and Bhuvanesh Sundar [30], and was tailored especially for solving the
MaxCut problem of certain graph types with QAOA.

The QRR algorithm can be summarized as follows:

1. Optimize a regular QAOA circuit at depth p (low, e.g., p = 1), with respect to
the cost function of the problem (this step basically performs the regular QAOA
algorithm).

2. Find the 2-point correlation matrix, Z, by sampling the solution from the optimized
QAOA circuit. The matrix entry at index (i, j), Zij , can be calculated by Zij =
(δij − 1)⟨ẐiẐj⟩, where δij is the Kronecker delta and ⟨ẐiẐj⟩ is the measurement
expectation of Pauli-Z on the i-th and j-th qubit. If the QAOA circuit has N
number of qubits, the size of the Z matrix will be N ×N .

3. “Relax” step: Find the set of eigenvectors {z⃗} of the correlation matrix Z. From
the Z matrix with size N ×N , we will obtain N eigenvectors.

4. “Round” step: Apply the sign function to the eigenvectors entry by entry, so round
non-negative entries to +1 and others to -1. Repeat the process once more, with
their sign flipped (round non-negative entries to -1, and others to +1) to cover for
cases where the problem has a non-degenerate solution. This doubles the number
of vectors from the "relax" step, from N to 2N eigenvectors.

5. From all eigenvectors obtained, check which eigenvector gives the best value when
evaluated with the cost function of the problem. This best eigenvector is the solution
bitstring of the QRR algorithm (the output of this algorithm is a single bitstring).

In QRR [30], the authors focus mainly on the approximation ratio as the comparison
metric. The approximation ratio is calculated as a ratio of the cost function expectation
value to the theoretical optimal value. They compare the expectation value from just the
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QAOA (averaged from all sampled bitstrings of QAOA) versus the solution bitstring of
QRR.

From an application-centric view, this comparison is not entirely fair. Notably, it hides
the fact that one might find the optimal bitstring out of all sampled bitstrings from QAOA.
QRR improves QAOA expectation value by a good margin. However, during the QAOA
procedure, one can find some bitstrings sampled from QAOA to be a better solution than
the QRR solution. This leads to the conclusion that QRR might bring a clear advantage
is when QAOA failed to sample the optimal bitstring since the eigendecomposition and
rounding process in QRR can retrieve the optimal bitstring nonetheless.

The idea of QRR also opens up a new possibility of using different post-processing
techniques to increase the quality of the bitstrings sampled from QAOA. Since QRR
is basically an eigendecomposition, it has a computational cost of roughly O(N3). An
interesting research outlook is to test other bitstring post-processing techniques that
have similar (or even lower) computational costs and compare their performance to
QRR. For example, randomly flipping 3 bits for each sampled bitstring from QAOA is a
post-processing that also roughly has O(N3) computational cost.

In theory, QRR can technically be applied to other quantum algorithms as well, e.g.,
VQE. However, its performance has to be evaluated on an algorithm-by-algorithm basis.
Since it depends on the initial performance of the algorithm, it will also vary between
different applications.
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6 Decomposing and Transforming the Problem

Decomposition steps are crucial for the success of quantum computing in optimization
for two reasons: First, quantum computers should only be used for tasks where they
outperform classical ones. Typically, this applies only to specific subproblems. Second, as
current quantum computers are still limited on the size of treatable problems, it is often
not possible to encode optimization problems directly on quantum hardware. To this end,
in this chapter two approaches are presented to tackle this problem. Both methods show
potential of increasing the performance of optimization algorithms on noisy quantum
computers.

• As a prerequisite, section 6.1 summarizes the connection between QUBO problems
and the MaxCut optimization problem of dividing a given graph’s vertices into two
sets with a maximal number of connections between the sets.

• Section 6.2 presents a graph shrinking algorithm that applies to MaxCut problems
and leverages correlations from either quantum or classical resources to recursively
simplify the problem. Using classical subroutines, allows to shrink the problem
until it can be encoded a quantum computer, while using quantum resources, like
introduced in [31], [32], increases the performance significantly even though the
problem could be encoded on the quantum computer immediately without any
reduction in the decision variables.

• Then, section 6.3 introduces a circuit cutting algorithm in combination with the
graph shrinking. The algorithm allows us to cut the quantum circuit in the middle,
thus making it possible to run an optimization problem on a circuit that employs
half of the qubits of the original algorithm. This circuit cutting comes however at
the cost of running the algorithm more often compared to the uncut circuit.

6.1 Transformation from QUBO to weighted MAXCUT problem

Both the graph shrinking and the circuit cutting algorithms work with weighted MaxCut
instances. Despite the simple structure of the MaxCut problem, it is a popular exam-
ple of a combinatorial optimization problem since any quadratic unconstrained binary
optimization (QUBO) problem can be transformed into a MaxCut problem.

MaxCut Formulation A MaxCut problem instance is defined by a weighted undirected
graph G = (V,E) with vertices V = {i}, edges E = {e} and edge weights we. We
denote the number of vertices by n = |V |. In MaxCut , the task is to find a subset
of nodes that maximizes the weight of edges connecting the chosen node subset and its
complement. Formally, we want to find a node partition W ⊆ V such that the edge set
δ(W ) := {ij ∈ E | i ∈ W, j ∈ V \W} maximizes its weight defined as

∑
e∈δ(W )we.

The weighted MaxCut problem can also be formulated as maximizing an integer
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quadratic unconstrained cost function C(z) in the form of

C(z) =
1

2

∑
ij∈E

wij(1− zizj). (15)

Here, z ∈ {−1, 1}n and zi indicates whether vertex i is in the subset W or not. Further-
more, wij ∈ R represent the edge weights.

Transformation QUBO to MaxCut For understanding the transformation from QUBO
to MaxCut , we also introduce its binary formulation with x ∈ {0, 1}n:

C ′(x) =
∑
ij∈E

wij
(
xi(1− xj) + xj(1− xi)

)
= xTWx. (16)

Here, W = {ωij} is the weight matrix and x = e− x, where e is the all-one vector in Rn.
It is possible to transform any QUBO problem with n decision variables to a MaxCut
problem with n+ 1 nodes. The description follows [33]. For this, we define the QUBO
problem by an n× n QUBO matrix Q and the incidence vector x ∈ {0, 1}n that contains
the decision variables:

xTQx =
∑
ij

xiQijxj = −
∑
ij

xiQij(1− xj) +
∑
ij

Qijxj = rTx− xTQx (17)

with rj =
∑

i qij . Notice that the right part on the left-hand side is already a MaxCut
problem as defined by eq. (16), while we need to introduce an additional node in the
MaxCut problem graph to include the left part. From this, we can deduce an equivalent
MaxCut problem graph G′ = (V ′, E′) with nodes V ′ = 0, 1, ..., n and edges E′ = E ∪E0.
These edges are defined as:

E = {(i, j) : Qij ̸= 0; i, j = 1, 2, ..., n; i ̸= j} (18a)

E0 = {(0, i) : ri ̸= 0; i = 1, 2, ..., n}, (18b)

and we introduce the edge weights:

wij =

 −Qij , if (i, j) ∈ E

−rj , if (i = 0, j) ∈ E0,
(19)

This graph is now equivalent to the QUBO problem, up to a constant factor α =
∑

i ri.

6.2 Graph Shrinking

Introduced in [31], [32], recursive QAOA (RQAOA) is an algorithm that calculates
correlations from standard QAOA routine and uses these correlations to successively shrink
the optimization problem. In addition, [34] and [35] introduce new means of computing
correlations, namely from linear programming (LP) and semi-definite programming (SDP),
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to use in shrinking algorithms for optimization problems. This can be used for shrinking
a problem until it can be solved optimally with future quantum computers, that can
only solve problems with limited size. But it is also significant to mention that it also
introduces new classical approximation algorithms that make use of this shrinking routine
to outperform its classical counterparts.

6.2.1 Means of computing correlations

The core of the algorithm is formed by the correlations between the decision variables of
the MaxCut problem. Each edge ij ∈ E in the problem graph is assigned a correlation
bij ∈ [−1,+1]. Ideally, we want this correlation to be indicative of the correlation between
variables in high-quality solutions of the MaxCut problem. In this case, a large negative
(positive) correlation between two variables indicates that in good candidate solutions,
these two variables take mostly opposite (equal) values on average. In the language of
MaxCut , this translates to an edge predominantly being cut for negative correlations
and not cut for positive correlations.

The shrinking algorithm works identically irrespective of the correlations that are used.
However, for different situations, different means of computing correlations might be
better suited to achieve the best possible results. [35] introduces three means of computing
correlations here, namely, using LP and SDP relaxations, as well as QAOA. For the sake
of concreteness, we will introduce the correlations calculated from QAOA in detail, while
just referring to [35] for the other approaches.

For the QAOA correlation, we first follow the standard QAOA approach. We use a
classical subroutine that optimizes the parameters (β, γ) such that the expectation value

F (β,γ) = ⟨Ψ(β,γ)|HC |Ψ(β,γ)⟩ (20)

is maximized. Thus, we hope to prepare a superposition of high quality candidate
solutions.

As follows from eq. (15), for MaxCut the cost Hamiltonian HC can be written as

HC =
1

2

∑
ij∈E

wij(I − ZiZj), (21)

where I is the identity operator and Zi is the Pauli-Z operator acting on qubit i. After
maximizing the expectation value F (β,γ), correlations bij between nodes i and j connected
by an edge can be defined as the expectation value with respect to the QAOA state:

bQAOA
ij = ⟨ZiZj⟩ ≡ ⟨Ψ(βopt,γopt)|ZiZj |Ψ(βopt,γopt)⟩ , (22)

where βopt and γopt stand for the optimized parameters after maximization.
As we can see, these correlations measure the relationship between the spins Zi and Zj .

If we measure +1 we conclude that the corresponding decision variables are in the same
partition and in the case −1 in opposite partitions. Thus, by measuring the expectation
value of low-energy states, we can make educated guesses about the relationship between
two variables. Naturally, we measure the quality of the correlation by the absolute value
of the correlation.

34



6.2.2 Shrinking procedure

MaxCut is particularly suitable for shrinking algorithms, as there is a natural way of
reducing the problem such that the shrunk problem is still a valid MaxCut problem.
However, extensions of the shrinking presented here can be applied to other problems as
well [36].
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Figure 8: Depiction of the shrinking algorithm used in this work: First, the MaxCut
problem instance is modeled according to the input requirement of the chosen
routine for computing the correlations. In step a) we use the chosen routine
to compute the correlations between variables. Then in b) the problem graph
is shrunk to a smaller MaxCut problem by fixing a variable based on the
calculated correlations and given update rules. The shrinking is repeated r
times before a new set of correlations is calculated for the simplified graph.
The steps a) and b) are applied in an alternating manner until the problem
is fully simplified. In the final step c) the solution to the original problem is
reconstructed based on the fixed variables. Figure taken from Ref. [35].

The shrinking procedure used in this work is similar to RQAOA [32], [37] as well as
the algorithm introduced in [34]. For a better overview, a schematic of the algorithm is
shown in fig. 8. In general, the problem can be divided into three major steps a) to c).

After modeling the MaxCut problem, we first start with calculating correlations
between the decision variables of the problem in step a). As explained in detail in [35]
and section 6.2.1, there are several ways of obtaining these correlations in polynomial
time. However, as they rely on approximation algorithms, the solutions are typically not
optimal and the performance of the approaches varies depending on the problem graph.
Nevertheless, when using perfect correlations for every shrinking step, i.e., correlations
obtained from an optimal cut of the problem, the shrinking algorithm is guaranteed to
return the optimal cut.

Then in step b), we use these correlations to successively reduce the number of nodes in
the problem graph. We do this by combining two nodes by fixing whether they are in the
same or opposite partition, generating a new MaxCut instance that has one node fewer.
We start the correlation with the largest absolute value and ties are broken randomly.
This way, the algorithm first selects the edges that have the strongest tendency to be
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Figure 9: Median approximation ratio RA of the bare LP, GW and QAOA (p = 1)
algorithms as well as their shrinking counterparts with recalculation intervals
r = 1 and r = ∞. The algorithms are applied to 80 different randomly generated
Erdős-Rényi graphs of size 100 for each of the densities 0.1, 0.4 and 0.8. The
lower and the upper error bars represent the first and third quartiles, respectively.
Figure taken from Ref. [35].

cut or not cut. The reduced problem is equivalent to the original problem under the
additional constraint implied by the correlation. Importantly, since the shrunk problem is
again a valid MaxCut problem, we can calculate new correlations for the shrunk problem
using the same method as for the original problem. This can be done either after every
shrinking step or after a given number r of shrinking steps.

Lastly, in step c), we recreate a solution to the original instance from a solution to
the shrunk instance by undoing the shrinking steps. Starting from a solution of the
shrunk graph, one simply has to backtrack through the performed shrinking steps. At
each shrinking step, we either add the shrunk node to the vertex partition or exclude it,
depending on the sign of the shrinking.

6.2.3 Comparison to the underlying algorithms

Interestingly, the shrinking algorithm not only works as a way to shrink problems until
they can be solved by quantum computers, but it also outperforms its classical, well
established MaxCut approximation algorithms, from which the correlations are inspired.

For the LP bare algorithm we calculate the same correlations as for the shrinking but for
rounding we use the spanning tree heuristic, which was also previously used in Refs. [38]–

36



[40]. For SDP, we use the standard Goemans-Williamson algorithm [41] as the bare
algorithm. For QAOA, the graphs are too large to perform a classical simulation of the
standard quantum algorithm. Efficient sampling from the output state of a QAOA p = 1
circuit with one hundred qubits already exceeds the capabilities of classical hardware [42].
To this end, we calculate the expectation value of the energy returned by p = 1 QAOA
using analytical formulae from [43].

In fig. 9 we see the comparison of shrinking with recalculating only once at the beginning
(r = ∞) of the algorithm and recalculating every shrinking step (r = 1) to the bare
algorithms. We applied the respective algorithms to randomly generated Erdős-Rényi
graphs with 100 nodes with densities densities 0.1, 0.4 and 0.8.

Starting with LP, we observe that the shrinking with no recalculations outperforms
the spanning tree heuristic for all of the considered graph densities, even though the
correlations are identical in both cases. In addition, there is a clear improvement
in performance when increasing the amount of recalculations performed (and, thus,
decreasing r). This also holds true for SDP and QAOA. However, in contrast to SDP
and QAOA, which show a roughly constant approximation ratio for all densities, LP
performs significantly better at lower densities than on high densities. As shown in [35],
when going to even lower densities, which are not shown in fig. 9, the LP correlations
will outperform all other correlations, making them the best correlations for low-density
MaxCut instances.

The bare GW algorithm and the SDP shrinking algorithm perform well across all
densities. The shrinking algorithm with recalculation interval r = 1 performs best with
median approximation ratios above 99% for all densities. Beyond the field of quantum
optimization, this makes the shrinking algorithm with SDP correlations a new GW-
inspired approximation algorithm, that manages to achieve better results than its original
algorithm for most of the here considered problem instances. However, the bare GW
algorithm slightly outperforms the shrinking algorithm with no recalculations.

Finally, for QAOA the shrinking algorithm with recalculation interval r = 1 (equivalent
to RQAOA) sees a significant improvement over the bare algorithm: For the different
densities, the median approximation ratio increases roughly from around 90% for the
bare QAOA to approximately 99% for the r = 1 shrinking algorithm. This behavior
is in line with previous results from the literature [31], [32]. Given that these results
for a low-depth (p = 1) QAOA are similar to the GW algorithm, this suggest that the
correlations from quantum resources manage to capture the relations between the decision
variables and by going to higher depths we can expect to further improve the results. The
improvement for going to higher depths has also been shown in [35] from smaller regular-3
graphs of 50 nodes, which makes this a promising approach to solve optimization problems
with quantum resources. Interestingly, QAOA shows the largest relative improvement
compared to the bare algorithm of the three different means of computing correlations.
The bare algorithm and the shrinking with no recalculations perform quite similarly.
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Figure 10: Schematic visualization of circuit cutting. a) Wire cutting: We replace the
identity channel by a linear combination of measure-and-prepare channels.
b) Gate cutting: We replace the corresponding unitary channel by a linear
combination of local channels including measurements.

6.3 Circuit Cutting

As stated in previous sections, the application of quantum-computing algorithms to tasks
such as combinatorial optimization is currently restricted to toy-sized problem instances.
As a promising tool for bridging the gap to practical relevant quantum computing, graph
shrinking was introduced in section 6.2. In this section, we describe another technique
aimed at optimizing the use of available quantum computing resources, which is known
as circuit cutting or circuit knitting [44]–[46]. We furthermore showcase the combination
of graph shrinking and circuit cutting in the social network MaxCut use case introduced
in section 3.4.

Circuit cutting is a technique to reduce the size of a quantum circuit by “cutting”
gates or qubit wires that link different partitions. Once all connections have been cut,
the partitioned circuits can be run independently on distinct, smaller hardware or even
sequentially on the same quantum computer. Conceptually, circuit cutting can be viewed
as a form of modular quantum computing where the entanglement shared among modules
is substituted by classical communication links. Work done in the QuaST project has
significantly advanced circuit-cutting methods [47], [48] and showcased several possible
applications [49]–[51].

Mathematically, the quantum channel F representing a quantum gate or a qubit wire
is written as a linear combination F =

∑
i aiFi, where each channel Fi acts locally on

the partitions, as illustrated in fig. 10. Circuit cutting has shown promising results in
applications such as chemical simulation [52], error mitigation [53], and combinatorial
optimization [49], [54]. Despite these successes, application of circuit cutting still is
restricted to toy instances. The reason is that circuit cutting incurs a sampling overhead,
defined as the factor of more samples required to estimate an expectation value of an
observable to the same accuracy as without circuit cutting. This sampling overhead per cut
is in the order of κ2 where the quantity κ =

∑
i |ai| is determined by the specific cutting

method. The total sampling overhead is κ2tot, where κtot is the product of the individual
κ of each gate or wire cut. Thus, the total sampling overhead grows exponentially in the
number of cuts, which quickly becomes prohibitive if circuit cutting is performed naively.
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graph shrinking

Figure 11: Modified shrinking procedure for generating graph with a small cardinality
vertex separator and approximately equally sized partitions. We first calculate
a vertex separator in the original graph (red nodes in the left graph) such that
the resulting partitions (blue and green nodes) have approximately equal size.
Then, we shrink the vertex separator to a specified target size K, illustrated
on the right side for the case K = 1. Figure taken and modified from [49].

In a recent study [49], we utilized graph shrinking to reduce the number of cuts
necessary to partition QAOA quantum circuits. As a result we reduced the sampling
overhead of circuit cutting significantly. In the following, we illustrate this method at
the social network graphs of section 3.4. Our approach involves a variant of the graph
shrinking procedure introduced in section 6.2. This variant produces a graph, which can
be partitioned into two vertex sets with approximately equal node counts such that the
partitions are connected by a vertex separator of of cardinality K. Figure 11 illustrates
this procedure for the case K = 1.

Although determining an appropriate shrinking sequence for the two partitions is NP-
hard, practical solutions can be found quickly. The cardinality K is an input parameter
to the shrinking algorithm. The shrinking process is illustrated in fig. 11 for K = 1.

In the second step, we map the shrunk graph to QAOA circuits. As shown in fig. 12,
the size of the vertex separator corresponds to the number of wire cuts per layer [54]
which are required to achieve independent partitions. Here, we use two different cutting
techniques. Recently, the author of [55] have shown that κnc = 4 for an individual wire
cut can be reduced to κcc = 3 if we allow classical communication. Here, circuit cutting
with classical communication refers to a protocol where the operation performed on one
partition depends on the outcome of a measurement performed on the other partition. In
our work [49], we proposed to alternate the κnc and κcc cutting. This guarantees that
classical information only needs to be communicated in one direction (one-way classical
communication). Although two-way classical communication could further reduce the
sampling overhead, this would necessitate two quantum computers (one for each partition)
linked with real-time communication. In contrast, one-way communication allows for
a sequential evaluation on the same device. After training the QAOA algorithm, for
example by following section 5.3, we evaluate the solution by sampling bitstrings. Figure 13
compares the bitstring distribution for standard and cut QAOA circuits. The histograms
of the standard QAOA peak at the right, indicating high-quality solutions. In contrast, the
bitstring distributions obtained from the cut QAOA circuits are shifted towards smaller
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Figure 12: Mapping of a graph with a small cardinality vertex-separator to a QAOA circuit.
The cardinality K of the vertex separator translates into the number of cuts
needed per QAOA layer. The figure shows an example with K = 1. In order
to reduce the sample overhead imposed by circuit cutting, we alternatingly
employ two different cutting methods. Figure taken and modified from [49].

values. Thus, at first sight, circuit cutting seems not meaningful for sampling tasks. In
the QuaST project, however, we derived quality guarantees on the bit string probability
distribution [49], [54]. More precisely, in order to match the probability of obtaining a
specific bitstring in the un-cut case, we must sample by a factor of κtot more often in the
cut case. That is, if we need to draw N samples from the un-cut distribution to obtain a
bitstring s with probability at least 1−δ, for some δ > 0, we have to draw κtot ·N samples
from the uncut distribution to obtain bitstring s also with probability at least 1− δ. For
a two-layer QAOA with alternating cut type, we therefore find κtot = κncκcc=12. We
believe that these results form an initial step into a promising research direction that
could bring optimization problems amenable to current or near-term quantum hardware.
Future work will refine and advance these methods, helping to reduce the gap between
today’s experiments and practical applications of quantum computing.
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Figure 13: Experimental results for applying shrinking and cutting to two social network
MaxCut instances from section 3.4. On the top row, we draw the original
graphs having 10 (left) and 15 (right) vertices. In red, we highlight the vertex
separator which is shrunk to a single vertex via graph shrinking. In the bottom
row, we visualize the histograms resulting from the cut and uncut QAOA
circuits. Here f(s) denotes the normalized objective value of bitstring s (larger
is better) and p(s) denotes the corresponding probability.

7 Quantum Computing Hardware

Even from and end user side, or when doing research in quantum algorithms, one aspect
cannot be left out: quantum hardware. There are different possible technologies to
realize qubits, and even more manufacturers offering some form of experimental or even
commercial access to their systems. How an optimization problem should be handled
always depends on the quantum hardware as well. Some of these aspects are discussed in
this section.

• Section 7.1 discusses the difference in research and evaluation results when using
simulators or quantum hardware.

• Section 7.2 gathers the QuaST expertise in handling and evaluation quantum
computers based on superconducting qubits, ion traps and neutral atoms as well as
superconducting annealing systems. All technologies have distinct advantages and
disadvantages, with direct comparisons currently made difficult due to the wide
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spread in technological maturity especially of the access models.

7.1 Simulators and Quantum Hardware

In quantum computing, researchers and developers often rely on two distinct approaches to
test and run quantum algorithms: simulators and real hardware. Simulators are classical
computer programs designed to emulate the behavior of quantum systems. They provide a
controlled environment where quantum circuits can be executed without external noise or
disturbances and serve as an essential tool for designing, testing, and debugging quantum
algorithms before running them on actual quantum hardware. However, they require
keeping track of the state vector, which increases exponentially with the number of qubits.
Thus, simulators are limited in the number of qubits one can simulate, see fig. 14.

Real quantum hardware consists of physical systems such as superconducting qubits or
ion traps which are susceptible to noise and environmental disturbances. Noise can arise
from various sources, such as imperfect gate operations, decoherence, and readout errors.
The presence of noise can significantly impact the accuracy and reliability of quantum
computations and can completely rule out any benefits from quantum computing [56].

Another difficulty of real quantum hardware compared to simulators arises when looking
at variational quantum algorithms and their trainability. In simulators, techniques like
backpropagation and the adjoint method can efficiently compute gradients and optimize
variational quantum algorithms [57]. These techniques allow for the direct computation
of gradients with respect to all trainable parameters of the quantum circuit. However,
these methods are not possible on real quantum hardware. Instead, one relies on the
parameter-shift rule [27] for gradient estimation, which requires 2 circuit evaluations for
each parameter of the quantum circuit, which can be increasingly costly on real hardware
and leads to inefficiencies.

In conclusion, simulators provide a noise-free environment for designing and testing
quantum algorithms but are limited in the number of qubits one can simulate. Real
hardware, despite being subject to noise and other unfavorable properties, is necessary
for running large-scale quantum algorithms.

7.2 Different hardware options

The theoretical algorithms formulated to solve an optimization problem are often inde-
pendent of the specific quantum hardware. This leads to the question regarding which
hardware concept best suits a specific problem. However, the answer is not simply a
matter of comparing result quality; it necessitates careful benchmarking considerations.
We can categorize the hardware into two main types: one that employs algorithms de-
scribed with gates and another that utilizes adiabatic processes to derive solutions. For
gate-based quantum computers, the primary distinction among different systems lies in
their hardware capabilities, qubit connectivity, and gate sets. These three factors will
significantly influence the performance of the designed circuit on the respective hardware.
For instance, in systems with low connectivity, minimizing long-range entanglement
between qubits is advisable. Quantum Annealers, on the other hand, mimic an adiabatic

42



Figure 14: Runtime of a simulator (time needed for circuit execution) in seconds of a
simple hardware-efficient quantum circuit with 5 layers as the number of qubits
increases.

process evolving a quantum system into its ground state. Thus, they do not inherit a
universally applicable gate set but are limited to solving certain types of optimization
problems.

In the following sections, we will examine each type of hardware and its various
providers, discussing access methods and best practices drawn from firsthand experience
with quantum hardware.

7.2.1 Superconducting Qubits

A central advantage of quantum computers based on superconducting qubits is their
execution speed. They deliver the fastest results for variational algorithms compared to
the other quantum hardware tested (excluding annealing which cannot run variational
algorithms in the usual sense). The mein drawback, however, is the limited connectivity
of the qubits. When developing an ansatz for this hardware, it is crucial to consider how
qubits are entangled. If carelessly designed, the SWAP gate overhead might undermine
any chance of interpretable results because of noise.

For experiments on this hardware, a VQE algorithm is used in combination with
a hardware efficent ansatz. The circuit comprises one layer of RY rotations and one
entangling layer of CZ rotation where we skip the non-local gate between the first and last
qubit to decrease the SWAP gate overhead (which was the best-performing architecture
on the simulator). We also keep the circuit depth low for hardware noise considerations.

The two main players in superconducting hardware, IBM and IQM, provide cloud
access to their systems. We access the most up to date hardware that would be able to
solve our problem. Figure 15, compares both provider on multiple VQE runs over the

43



0 5 10 15 20 25 30 35 40
iterations

20000

0

20000

40000

60000

74675
80000

en
er

gy

Aersimulator
IQM (Garnet)
IQM@LRZ (QExa20)
IBM Hr2 (Fez)

Figure 15: Comparison of IQM and IBM optimization process. Here, we differentiate
between IQM access through the LRZ and their cloud access. The setup here
is the same, i.e, same circuit (one layer of RY and one of CZ), same optimizer
seed to make results as reproducible as possible.

same graph. The circuit is simply transpiled into the different basis gates defined by
sets dependent on the hardware. Indeed, IQM has X and Y rotation as well as CZ for
the entangling gate, whereas IBM Heron uses X and Z rotation gates. That makes the
transpiled circuit slightly different for the two backends regarding gate count, but the
depth stays the same in both cases. Two types of access were available for IQM, cloud
and via the LRZ; both methods of access are presented here for comparison.

Following application-specific performance measure, Figure 16, illustrates the compari-
son in feasibility ratio, which represents the proportion of feasible TSP paths corresponding
to the best result achieved during the optimization process, across the two hardwares.
The AerSimulator feasibility ratio is simply here to illustrate the simulator baseline, which
is comprising of only the optimal solution. This experiment is conducted without any
error mitigation techniques and includes shot noise. However, the number of feasible
states appears to correlate with the lower energy values attained by the IBM hardware.

Naturally, we also examined the runtime differences across all available hardware access
options. The job timing was measured consistently by summing the runtime from when
the job is submitted until the results are received. This includes any potential network or
internal overhead from the provider. We chose this approach because each provider has
a different method for measuring job execution times. From Figure 17, two interesting
observations can be made. First, there is a noticeable difference between the jobs run
on the cloud IQM access (Garnet) and the QExa20 system hosted at LRZ. This can be
explained by the fact that for the cloud access, the QPU was reserved exclusively for our
jobs, whereas on the LRZ machine, we were sharing the QPU with other users. Second,
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Figure 16: Comparison of IQM and IBM feasibility ratios at their respective final param-
eter state. AerSimulator shows a feasibility of 1.0 because the final state is
only comprised of the optimal solution.

we observe a clear disadvantage for the IBM Heron 2, despite it being run in Session
mode, which effectively locks the machine to only our jobs. A key factor here is that the
QPU is hosted in North America, which increases network latency and contributes to
longer runtimes. If these providers had more transparent timing data for their executions,
we could better understand the reasons behind such significant differences between them.
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Figure 17: Runtime comparison between all three superconducting hardware
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7.2.2 Ion traps

In comparison with superconducting qubits, ion-trap quantum computers generally
have better noise behavior but are worse in speed. Additionally, compared to today’s
superconducting IBM systems, the number of qubits available is still more limited. While
IBM offers systems with about 130 and 156 physical qubits, ion trap QCs typically have
only 35 (IonQ, 2024) or 12 (AQT, 2024) available.

On the other hand, ion trap devices offer an ideal connectivity. AQT, for example,
offers an all-to-all connection on their 12-qubit system. Hence, there is no restriction
in generating entanglement between the qubits when running a quantum algorithm. In
particular, this might be a significant advantage for solving problems corresponding to
graphs with a high density.

This quality, in conjunction with a relatively low noise ratio, can lead to computation
results that come close to noiseless simulation. Figure 18 shows a comparison between
the AQT ion trap quantum computer IBEX™ and the Qiskit Aer simulator.

Figure 18: Probability of the optimal solution of a Markowitz optimization problem in
dependence of problem size in qubits, performed by QAOA

7.2.3 Neutral atoms

Neutral atom devices are unique in how the algorithm can be implemented and encoded on
the hardware. They operate in two computational modes. The first is a gate-based mode,
where sequences of laser pulses are directed at specific qubits to create the gates. The
second mode is analog, in which computation occurs by addressing the entire qubit array
and gradually evolving the system toward the ground state of the target Hamiltonian
through the design of suitable pulse shapes.
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Another specificity of neutral atoms is encoding the qubits on the atom lattice. This is
a critical part of the algorithm since the placement determines the connectivity. There is
no universal encoding for general problems; each graph instance requires a different qubit
arrangement. The idea is to minimize the interaction term from the underlying general
Hamiltonian by efficiently placing the atoms on the lattice. Figure 19 gives an example
placement for a problem requiring 4 qubits.

Figure 19: Encoding of 4 qubits on a triangular atom lattice in preparation for evaluating
a PASQAL quantum computer

Pasqal’s devices can only be operated in analog mode. Figure 20 gives an example of a
pulse sequence. Here, two parameters, Ω, the amplitude, and δ, the detuning, are varied
across 4 microseconds. Since we have no prior knowledge of what the pulse shape should
be, we optimize it in a similar way as the variational circuits. We take 10 points (5 for
each Ω and δ), and we interpolate between these points while a Bayesian optimization
procedure finds the best point configuration (see Figure 21).

Figure 20: Best performing pulse sequence found by smoothly interpolating between
points that act as the parameters we optimize for.

In Figure 22, we show results for a 3-node graph. However, the performance of this
algorithm drops quite rapidly as we increase the number of nodes in our graph. There
might be multiple reasons, beyond the hardware noise levels, for the subpar results
compared to other hardware types. The first one might be the lack of digital mode, i.e.,
we cannot address individual qubits, which heavily restricts our algorithm choice. Secondly,

47



Figure 21: Bayesian optimization procedure solving a 3-node graph on Pasqal neutral
atom hardware

the Pasqal QPU is locked, at the moment, to a triangular lattice shape, which means that
we cannot freely optimize the placement of our atoms. Third, a 4000 nanoseconds cap for
the time evolution on the hardware makes the results not as good as a simulation where
this number can be increased. The slower the evolution, the better the results. Moreover,
it also restricts us from how much we can vary the pulse shape because of the unphysical
derivative values of the curve that might arise.

Figure 22: Sampled state after optimization of the pulse shape. Red and blue states are
the optimal path and equivalent

7.2.4 Superconducting annealing

Quantum annealing is a computational method that uses quantum fluctuations to solve
optimization problems. As an example, in fig. 23, the TSP is solved using D-Wave’s
proprietary methods. Due to the maturity of this hardware compared to the previous
ones, we can solve larger problems. Figure 23 presents the difference between the best
classically computed solution and the best solution found by the quantum processing
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unit (QPU). Since this method is still based on sampling the quantum state to get the
solution, running it multiple times increases the likelihood of hitting a solution closer to
the optimal one. From graph sizes 5 to 9, the optimal solution is always reached. However,
as we increase the number of nodes in the graph, it becomes increasingly harder to find
the optimal solution (see 23).

Figure 23: Difference between the best classical and quantum annealing solution. From 5
to 9 nodes, when sampling, the QPU finds the best solution for a TSP.

Another advantage of D-Wave’s system, compared to other hardware, is the time to
solution (see Figure 24), which seems to scale linearly with the graph size.

Moreover, another parameter we need to consider is the encoding of the problem to
the physical qubits. Indeed, the QPUs of D-Wave’s Advantage2™ do not possess all-to-all
connectivity, which makes the embedding crucial for good performance. Our formulation
of the TSP scales quadratically with the number of nodes in the graph. On top of that,
the minor embedding, i.e., the encoding from variable to physical qubit, adds a power
of two to the scaling, resulting in (n− 1)4 in the worst case, where n is the graph size.
Figure 25 illustrates this point by looking at graphs of size up to 15.
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Figure 24: Runtime as we increase the number of nodes in the graph to solve

Figure 25: Number of physical qubits after minor embedding of our QUBO on the QPU
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